If an operator is non-associative it cannot be used in a sequence. For example the comparison operator (<=) is non-associative. Thus we cannot write a boolean expression of the form.

a <= b <= c

instead we must write

((a <= b) && (b <= c))
Language
Associativity Rule

FORTRAN
Left: *, /, +, -

 Right: **

Pascal Left: All

C Left: postfix ++, postfix --, *, /, %, binary +, binary –

 Right: prefix ++, prefix --, unary +, unary –

C++ Left: *, /, %, binary +, binary –

 Right: ++, --, unary -, unary +

Ada Left: all except **

 Non-associative: **

(FORTRAN) ** : exponentiation operator

For int a = -2; int b = 7; int c =19;

Problem:
a = b-- - a--;
b = a-- + b-- + --c
c = a-- + ++b

Final variable values in MS C++
a = 6
b = 32
c = 39
Final variable values in Java:
a = 7
b = 34
c = 42
i = 1;

a = i+++i+++i++;

a是?

a = i + ++i + ++i++;

a = i++ + i++ + i++;

 The following precedence table (copied from the Java Tutorial) lists the operators according to their precedence order. Higher precedence operators are evaluated before lower precedence operators.

	postfix operators
	[] . (params) expr++ expr--

	unary operators
	++expr --expr +expr -expr ~ !

	creation or cast
	new (type)expr

	multiplicative
	* / %

	additive
	+ -

	shift
	<< >> >>>

	relational
	< > <= >= instanceof

	equality
	== !=

	bitwise AND
	&

	bitwise exclusive OR
	^

	bitwise inclusive OR
	|

	logical AND
	&&

	logical OR
	||

	conditional
	? :

	assignment
	= += -= *= /= %= &= ^= |= <<= >>= >>>=

 For operators on the same line, that have equal precedence, associativity decides which operator to be executed first. In Java all operators, except the assignment operators, have left associativity.

	The operators in Java, shown in order of precedence - from highest to lowest

	Priority
	Operators
	Operation
	Associativity

	1
	[]
	array index
	left

	
	()
	method call
	

	
	.
	member access
	

	

	2
	++
	pre- or postfix increment
	right

	
	--
	pre- or postfix decrement
	

	
	+ -
	unary plus, minus
	

	
	~
	bitwise NOT
	

	
	!
	boolean (logical) NOT
	

	
	(type)
	type cast
	

	
	new
	object creation
	

	

	3
	* / %
	multiplication, division, remainder
	left

	

	4
	+ -
	addition, substraction
	left

	
	+
	string concatenation
	

	

	5
	<<
	signed bit shift left
	left

	
	>>
	signed bit shift right
	

	
	>>>
	unsigned bit shift right
	

	

	6
	< <=
	less than, less than or equal to
	left

	
	> >=
	greater than, greater than or equal to
	

	
	instanceof
	reference test
	

	

	7
	==
	equal to
	left

	
	!=
	not equal to
	

	

	8
	&
	bitwise AND
	left

	
	&
	boolean (logical) AND
	

	

	9
	^
	bitwise XOR
	left

	
	^
	boolean (logical) XOR
	

	

	10
	|
	bitwise OR
	left

	
	|
	boolean (logical) OR
	

	

	11
	&&
	boolean (logical) AND
	left

	

	12
	||
	boolean (logical) OR
	left

	

	13
	? :
	conditional
	right

	

	14
	=
	assignment
	right

	
	*= /= += -= %=
<<= >>= >>>=
&= ^=

|=
	combinated assignment
(operation and assignment)
	

	

	Table 4.2: Precedence and Associativity in Java

	Precedence
	Operator
	Associativity

	1
	(), []
	non-associative

	2
	new
	non-associative

	3
	.
	left-associative

	4
	++, - -
	non-associative

	5
	- (unary), + (unary), !, ~, ++, - -, (type)
	right-associative

	6
	*, /, %
	left-associative

	7
	+, -
	left-associative

	8
	<<, >>, >>>
	left-associative

	9
	<, >, <=, >=, instanceof
	non-associative

	10
	==, !=
	left-associative

	11
	&
	left-associative

	12
	^
	left-associative

	13
	|
	left-associative

	14
	&&
	left-associative

	15
	||
	left-associative

	16
	?:
	right-associative

	17
	=, *=, /=, %=, -=, <<=, >>=, >>>=, &=, ^=, |=
	right-associative

