Computer-Aided Veritfication

Topics

Introduction

Foundations

o Logics

o Transition System

Methodologies

Temporal logics and Model checking
Theorem proving and Program verification
Process Algebra

Embedded Systems

VDM -~ Z -~ B~ SDL

UML and State Chart

o 0o 0o 0o o0 o

Topics

Applications - Case study and Tools
o HDL/PVS

o Red and Uppall

o CUDD / SMV / NuSMV

0 Statemate Rapsody

French Guyana, June 4, 1996
$800 million software failure

Mars, July 4, 1997
Lost contact due to real-time priority inversion bug

$4 billion development effort
> 507 system integration & validation cost

400 horses

100 microprocessors

™

w-ws STOF:

CPUID: Genuine Intel 5.2.c

11 Base
Falaasaa

fc874008
Feffafdea
fc788888
fefbcBBg
fefade08

fcODHBB8
fc718868
fFc870808
FcobaBasg
fea3bBng

Addyress

fec32d849
EA1471c8
Fa1471de
HA1 47384

Festart and set the recovery opt ions
nr the SCRASHDEBUG system stavt option.

BxA8BB8AA1YD (AxABAA8B88, 8xCABEBFFe , 8axFFFFEFD4, 8xCaB88888)
BAD_ POOL_HEADER

DateiStnp
J32ZB2ZcB7 e
3ledBsba
2leddtbf
2lecec?a
Flectce?d
3lececdf?
3led868Db
Flecéc9B
Flecec9d
Flectcse2
Jlecetcch
Fleed262
21£f91a51
2lecteboc
31f138a7
J31681a38
d3leceea
Flecec9b
Flecechl
31f7alba

dword dum
8814388 8814388 86144868
8144888 BAl1449888 ffdffa8a
8122888 Ffo883fed fA38cead
BEH3ZIHZI{H BHEBHZ3Ic HBHEBHE 34

| o

Hame
ntoskrnl .exe
atapi.sus
alc?8xx.s54us
CLASSZ .53Y5
Floppy .S¥S
F=_Rec .53Y¥Y5
KSecDD.5Y5
igada2prt .sys
kbdclass .sus
Mmga_mil .sys
Mcsf= .5Y5
HDIS .5Y5

moga .dll

TDI .S5¥YS
tepip.sys

el 59w .sys
netbios .sus
Parallel .3¥3
Serial .3Y5
MUP .SYys

Build

[13811]

ffdf feea
cB3888hba
el33cdbd
BB ERE8

Il Base
g8Balafaana
88886088
g882cdBBae
8837cBan
fecagaa
foo9oc9a8a
foc9cabBBan
fcB6cBBna
fcefaBaan
focg98888
focd4hBAaa
adBBBeBan
fecilBan
feafbban
feabh3fan
fochaBAaa
fc8588B88
fc9549888
feadchan
feaodafan

irgli:1f SYSUVER 8xf8888565

DateStnp
dJleebcas
3lece6c?d
31led237c
2leedBa?
AlecétEecal
I1leccEc99
3lecec? B
31lecé6c9?
31f58722
Ilecécied
3lecécc?
31f954f7
31leeddB?
21ed8?754
31fr58a6s
31f8fB864

88e78bb2
88888 an1l
el33cdan
BBaBB8B88

in the system control

MHame

hal .4d411

SCS5 IPORT .5¥5
Disk.sus
Htfs .sys
Cdvom.SYS
Mwll .5%5
Beep .5Y5
mouclass .s5ys
UIDEOPFORT .5Y5
yga ,.sys

Mepf=s .S5¥Y5
windzk.sus
Fastfat .5¥5
nbf .sys
netbt .sys=s
afd.sys
FParport .sus
ParUdmn.5%5
rdr .s5ys

SPY ,Sys

— Hamne

— KS5ecDD.5Y5

ntoskrnl .exe
ntoskrnl .exe
ntoskrnl .exe

ranel

The Blue Screen of Death (BSOD)

=3

¢ lom O iy pocmresd AL SRIDORMSOL] b VED WKL
N TS The carrcat apylicatism will be ternisated.

any in tersisale the currenl apglicatlion

» Pross CTEL-ALT+DEL i5 rezlart yowr cempeicr. Tou will
loes any wxsaved (eformaties 1n all spplicatines

Preas amy key Lo coallime

1 barpage pnattended

Pty

The quest for correctness

"I't /s fair to state, that in this digital era correct
systems for information processing are more valuable
than gold.”

Rapidly increasing integration of IT in different
applications:

o embedded systems

o e-banking and e-shopping

o transportation systems

Reliability increasingly depends on hard- and
software integrity

Defects can be fatal and extremely costly
o products subject to mass-production
o safety-critical systems

'What is system verification?

Verification +Validation:
Verification = “check that we are building the thing right”
Validation = “check that we are building the right thing”

‘ System verification = Model checking

= Because the dynamics of a discrete system
can be captured by a Kripke structure.

= Because some dynamic properties of a
discrete system can be stated in modal logics.

‘ The Dream

OK

Program

@
- / Checker EFI’OF trace

Requirement

‘ Model Checking

\ OK
Finite-state model ./
or

/ Model Checker EWOF trace

Temporal logic formula

Model Checking

Model checking is an automatic verification
technique for finite state concurrent systems.

Developed independently by Clarke and
Emerson and by Quellle and Sifakis In
early 1980'’s.

Specifications are written in propositional
temporal logic.

Verification procedure is an exhaustive
search of the state space of the design.

‘ Why use Model Checking?

= Automatically check, e.g.,
o Invariants, simple safety & liveness properties

o absence of dead-lock and live-lock,
o complex event sequencing properties,

“Between the window open and the window
close, button X can be pushed at most twice.”

= In contrast to testing, gives complete coverage by
exhaustively exploring all paths in system,

= It's been used for years with good success in hardware
and protocol design

This suggests that model-checking can complement
existing software quality assurance techniques.

‘ What makes model-checking software

difficult?

/ AN
/ \
/ |
/ \I\

\

OK

wwseet ! G o

Temporal logic formula

[-:l /Model Checker

Error trace
= e

Problems using existing checkers:

= Model construction

Property specification

State explosion
Output interpretation

‘ Model Construction Problem

LD
&= Gap =) w

Model Checker

Program Model Description

= Semantic gap:
Programming Languages
methods, inheritance, dynamic creation, exceptions, etc.

Model Description Languages
automata

‘ What makes model-checking software
difficult?

@\ OK

Finite-state model .<A(;r
,-- = ~ / Error trace
/ X Model Checker - .
| \

\ Temporal logic formula I _
- -

Problems using existing checkers:

= Model construction State explosion

Property specification Output interpretation

‘ Property Specitfication Problem

= Difficult to formalize a requirement in
temporal logic

“Between the window open and the window
close, button X can be pushed at most twice.”

...Isrendered In LTL as...

[1((open /\ <>close) ->
(("pushX /\ Iclose) U
(close \/ ((pushX /\ Iclose) U
(close \/ (('pushX /\ Iclose) U
(close \/ ((pushX /\ Iclose) U

(close \/ (pushX U close))))))))))

‘ What makes model-checking software
difficult?

Finite-state model

I Error trace
u = e —

/
\

———

Temporal logic formula

Problems using existing checkers:

= Model construction State explosion

Property specification Output interpretation

State Explosion Problem

Cost Is exponential in the number of components

—>

Moore’s law and algorithm advances can help
o Holzmann: 7 days (1980) ==> 7 seconds (2000)

Explosive state growth in software
limits scalability

‘ What makes model-checking software
difficult?

@\ OK

Finite-state model
‘\ér - \

“Error trace \
= e

[-:l Model Checker , -

Temporal logic formula [

Problems using existing checkers:

= Model construction State explosion

Property specification Output interpretation

‘ Output Interpretation Problem

| |
— B

Program Model Description Error trace

= Raw error trace may be 1000’s of steps long

Must map line listing onto model description

Mapping to source is made difficult by

Semantic gap & clever encodings of complex features
multiple optimizations and transformations

Some Advantages of Model Checking

No proofs!!!

Fast

Counterexamples

No problem with partial specifications

Logics can easily express many
concurrency properties

Main Disadvantage

State Explosion Problem:
o Too many processes
o Data Paths

Much progress has been made on this
problem recently!

Model Checking Problem

Let M be a state-transition graph.

Let f be the specification (system properties)
In temporal logic.

Find all states s of M such that
M,s |=F.

q3

State-transition graph

Q set of states {91,9,,d3}
A set of atomic observations {a,b}
—>c QxQ transition relation g, — d,
[]: Q —> 2~ observation function [q,] ={a}

set of observations

Mutual-exclusion protocol

loop | loop
out: x1:=1;last:=1 out: x2:=1;last:=2
req: await x2=0 or last=2 req: await x1 =0 or last=1
in: x1:=0 in: x2:=0

end loop. end loop.

P1 P2

The ftranslation from a system description
to a state-transition graph usually involves
an exponential blow-up Il

@ pcl: {o,r,i}
G P2

x1: {0,1}
x2:{0,1}
@ last: {1.2)
/" \L 3-3.2.2-2 = 72 states

State-transition graphs are not necessarily
finite-state, but they don't handle well:

recursion (need pushdown models)
environment interaction (need game models)
process creation

Three important decisions when choosing
system properties:
prohibiting bad vs. desiring good behavior:
safety vs. liveness

may vS. must:
branching vs. linear time

operational vs. declarative:
automata vs. logic

Satety vs. liveness

Safety
o something “bad” will never happen

Liveness
o something “good” will happen

(but we don’t know when)

Safety vs. liveness for sequential programs

induction on control flow

Safety /

o the program will never produce a wrong result
(“partial correctness”)

Liveness
o the program will produce a result (“termination”)

\

well-founded induction on data

Safety vs. liveness for state-transition
oraphs
«Safety: those properties whose violation always

has a finite withess

(“if something bad happens on an infinite run, then it
happens already on some finite prefix”)

eLiveness: those properties whose violation never
has a finite witness

(“no matter what happens along a finite run,
something good could still happen later”)

q3

Run: ¢ —>q3>q¢q—>q3>9q >q—~>q,—

Trace: a > b >a—-> b >a sab—-ab—

State-transition graph S = (Q, A, =, [])

Finite runs: finRuns(S) < Q°
Infinite runs: INfRuns(S) < Q©
Finite traces: finTraces(S) c (24)

Infinite traces: infTraces(S) c (2A)°

This IS much easier.

/

Safety. the properties that can be
checked on finRuns

Liveness: the properties that cannot be
checked on finRuns

(they need to be checked on
INfRuNs)

Example:

Mutual exclusion

o It cannot happen that both processes are in their critical
sections simultaneously. Safe-ry

Bounded overtaking

o Whenever process P1 wants to enter the critical section,
then process P2 gets to enter at most once before process
P1 gets to enter. Safety

Starvation freedom

o Whenever process P1 wants to enter the critical section,
provided process P2 never stays in the critical section
forever, P1 gets to enter eventually. | jveness

q3

Fairness constraint:

the green transition cannot be ignored forever

q3

Without fairness: infRuns = q, (0; ;)" 0,° U (0, 04)°
With fairness: infRuns = g, (03 97)" 9,°

Two important types of fairness

Weak (Buchi) fairness

0 a specified set of transitions cannot be
enabled forever without being taken

Strong (Streett) fairness

o a specified set of transitions cannot be
enabled infinitely often without being taken

(O

ql

Strong fairness

Weak fairness

1

Fair state-transition graph S = (Q, A, —,
|, WE, SF)
WF: set of weakly fair actions

SF . set of strongly fair actions
where each action Is a subset of —

Weak fairness comes from modeling
concurrency

loop x:=0 end loop. | loop x:=1 end loop.

Weakly fair action
Weakly fair action

Strong fairness comes from modeling

choice
loop m:
n: x:=0 | x:=1
end loop.

Strongly fair action
Strongly fair action

Weak fairness vs. Strong fairness

Weak fairness is sufficient for asynchronous

models (“no process waits forever If it can
move”).

Strong fairness Is necessary for modeling
synchronous interaction (rendezvous).

Strong fairness makes model checking more
difficult.

Fairness changes only infRuns, not finRuns.
U

Fairness can be ignored for checking safety properties.

Two remarks

The vast majority of properties to be verified
are safety.

While nobody will ever observe the violation
of a true liveness property, fairness is a
useful abstraction that turns complicated
safety into simple liveness.

Branching vs. linear time

Branching time

0 something may (or may not) happen
(e.g., every req may be followed by grant)

Linear time
0 something must (or must not) happen
(e.g., every req must be followed by grant)

1

Fair state-transition graph S = (Q, A, —,
|, WF, SF)

Finite runs: finRuns(S) < Q°
Infinite runs: INfRunNs(S) < Q©
Finite traces: finTraces(S) < (24)

Infinite traces: infTraces(S) c (24)

Branching vs. linear time

Linear time:
the properties that can be checked on infTraces
*Branching time:

the properties that cannot be checked on infTraces

Linear Branching

Safety finTraces finRuns

Liveness inf Traces infRuns

9o

q4

Same traces {aab, aac}

Different runs ~ {0g d; 43, 0o 9o Aa}, {do 91 Gz o d1 G4}

Linear
Observation a may occur.

It IS not the case that a must not occur.

Branching

We may reach an a from which we must
notreacha b.

9o

q4

Same traces, different runs

L2 \@

Same traces, different runs (different trace trees)

Branching vs. linear time

Linear time Is conceptually simpler than
branching time (words vs. trees).

Branching time is often computationally more
efficient.

(Because branching-time algorithms can

work with given states,
whereas linear-time algorithms often need

to “guess” sets of possible states.)

Logics

Linear Branching

Safety STL
Liveness LTL CTL

Detining a logic

Syntax:
o What are the formulas?

Semantics:
o What are the models?
o Does model M satisfy formulag? M |= 0

atomic observations

Propositional logics:
0 boolean variables (a,b) & boolean operators

(~—)

o model = truth-value assignment for variables

Propositional modal (e.g., temporal) logics:
o ... & modal operators ([1,O)

2 model = set of (e.g., temporally) related prop.
madels !

observations
state-transition graph ("Kripke structure")

Model Checker Performance

Model checkers today can routinely handle
systems with between 100 and 300 state
variables.

Systems with 10" reachable states have
been checked.

By using appropriate abstraction techniques,
systems with an essentially unlimited
number of states can be checked.

Notable Examples- IEEE Futurebus”

In 1992 Clarke and his students at CMU used SMV
to verify the IEEE Future+ cache coherence
protocol.

They found a number of previously undetected
errors in the design of the protocol.

This was the first time that formal methods have
been used to find errors in an IEEE standard.

Although the development of the protocol began in
1988, all previous attempts to validate it were based
entirely on informal techniques.

Notable Examples-IEEE SCI

In 1992 Dill and his students at Stanford used
Murphi to verify the cache coherence protocol of the
IEEE Scalable Coherent Interface.

They found several errors, ranging from uninitialized
variables to subtle logical errors.

The errors also existed in the complete protocol,
although it had been extensively discussed,
simulated, and even implemented.

Notable Examples-PowerScale

In 1995 researchers from Bull and Verimag used
LOTOS to describe the processors, memory
controller, and bus arbiter of the PowerScale
multiprocessor architecture.

They identified four correctness requirements for
proper functioning of the arbiter.

The properties were formalized using bisimulation
relations between finite labeled transition systems.

Correctness was established automatically in a few
minutes using the CAESAR/ ALDEBARAN toolbox.

Notable Examples -HDLC

A High-level Data Link Controller was
being designed at AT&T in Madrid in 1996.

Researchers at Bell Labs offered to check
some properties of the design using the
FormalCheck verifier.

Within five hours, six properties were
specified and five were verified.

The sixth property failed, uncovering a bug
that would have reduced throughput or
caused lost transmissions!

Notable Examples
PowerPC 620 Microprocessor

Richard Raimi used Motorola’s Verdict
model checker to debug a hardware
laboratory fallure.

Initial silicon of the PowerPC 620
microprocessor crashed during boot of an
operating system.

In a matter of seconds, Verdict found a BIU
deadlock causing the fallure.

Notable Examples-Analog Circuits

In 1994 Bosscher, Polak, and Vaandrager
won a best-paper award for proving manually
the correctness of a control protocol used In
Philips stereo components.

In 1995 Ho and Wong-Tol verified an

abstraction of this protocol automatically
using HyTech.

Later in 1995 Daws and Yovine used Kronos

to check all the properties stated and hand
proved by Bosscher, et al.

Notable Examples-ISDN/ISUP

The NewCoRe Project (89-92) was the first
application of formal verification in a software project
within AT&T.

A special purpose model checker was used in the
development of the CCITT ISDN User Part Protocol.

Five “verification engineers” analyzed 145
requirements.

A total of 7,500 lines of SDL source code was
verified.

112 errors were found; about 55% of the original
design requirements were logically inconsistent.

Notable Examples-Building

In 1995 the Concurrency Workbench was used to
analyze an active structural control system to make
buildings more resistant to earthquakes.

The control system sampled the forces being
applied to the structure and used hydraulic actuators
to exert countervailing forces.

A timing error was discovered that could have
caused the controller to worsen, rather than
dampen, the vibration experienced during
earthquakes.

Model Checking Systems

There are many other successful
examples of the use of model checking in
hardware and protocol verification.

The fact that industry (INTEL, IBM,
MOTOROLA) Is starting to use model
checking Is encouraging.

Below are some well-known model checkers,
categorized by whether the specification is a
formula or an automaton.

Temporal Logic Model Checkers

The first two model checkers were EMC and
Caesar.

SMYV is the first model checker to use BDDs.

Spin uses the partial order reduction to
reduce the state explosion problem.

Verus and Kronos check properties of real-
time systems.

HyTech is designed for reasoning about
hybrid systems.

Behavior Conformance Checkers

The Cospan/FormatCheck system is based
on showing inclusion between w-automata.

~DR checks refinement between CSP
orograms, recently, used to debug security
protocols.

The Concurrency Workbench can be used
to determine if two systems are
observationally equivalent.

Combination Checkers

Berkeley’s HSIS combines model checking
with language inclusion.

Stanford’'s STeP system combines model
checking with deductive methods.

VIS integrates model checking with logic
synthesis and simulation.

The PVS theorem prover has a model
checker for model mu-calculus.

Directions for Future Research

Investigate the use of abstraction, compositional
reasoning, and symmetry to reduce the state
explosion problem.

Develop methods for verifying parameterized
designs.

Develop practical tools for real-time and hybrid
systems.

Combine with deductive verification.

Develop tool interfaces suitable for system
designers.

	Computer-Aided Verification
	Topics
	Topics
	The Blue Screen of Death (BSOD)
	The quest for correctness
	What is system verification?
	System verification = Model checking
	The Dream
	Model Checking
	Model Checking
	Why use Model Checking?
	What makes model-checking software difficult?
	Model Construction Problem
	What makes model-checking software difficult?
	Property Specification Problem
	What makes model-checking software difficult?
	State Explosion Problem
	What makes model-checking software difficult?
	Output Interpretation Problem
	Some Advantages of Model Checking
	Main Disadvantage
	Model Checking Problem
	State-transition graph
	Mutual-exclusion protocol
	State-transition graphs are not necessarily finite-state, but they don’t handle well:
	Three important decisions when choosing system properties:
	Safety vs. liveness
	Safety vs. liveness for sequential programs
	Safety vs. liveness for state-transition graphs
	State-transition graph S = (Q, A, , [])
	Example:
	Two important types of fairness
	Fair state-transition graph S = (Q, A, , [], WF, SF)
	Weak fairness comes from modeling concurrency
	Strong fairness comes from modeling choice
	Weak fairness vs. Strong fairness
	Two remarks
	Branching vs. linear time
	Fair state-transition graph S = (Q, A, , [], WF, SF)
	Branching vs. linear time
	Branching vs. linear time
	Logics
	Defining a logic
	
	Model Checker Performance
	Notable Examples- IEEE Futurebus+
	Notable Examples-IEEE SCI
	Notable Examples-PowerScale
	Notable Examples -HDLC
	Notable ExamplesPowerPC 620 Microprocessor
	Notable Examples-Analog Circuits
	Notable Examples-ISDN/ISUP
	Notable Examples-Building
	Model Checking Systems
	Temporal Logic Model Checkers
	Behavior Conformance Checkers
	Combination Checkers
	Directions for Future Research

