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The Blue Screen of Death (BSOD)





The quest for correctness
“It is fair to state, that in this digital era correct 
systems for information processing are more valuable 
than gold.”

Rapidly increasing integration of IT in different 
applications:

embedded systems
e-banking and e-shopping
transportation systems

Reliability increasingly depends on hard- and 
software integrity
Defects can be fatal and extremely costly

products subject to mass-production
safety-critical systems



What is system verification?

System verification amounts to check whether a 
system fulfills the qualitative requirements that 
have been identified.

Verification ≠Validation:
Verification = “check that we are building the thing right”
Validation = “check that we are building the right thing”



System verification = Model checking
Model checking:

Decision procedures for checking if a given Kripke
structure is a model for a given formula of a modal 
logic.

Because the dynamics of a discrete system 
can be captured by a Kripke structure.
Because some dynamic properties of a 
discrete system can be stated in modal logics.



The Dream

Program

Error trace

OK

Checker

or

void add(Object o) {
buffer[head] = o;
head = (head+1)%size;
}

Object take() {
…
tail=(tail+1)%size;
return buffer[tail];
}

Property 1: …
Property 2: …
…

Requirement



Model Checking

orFinite-state model
OK

Temporal logic formula

Model Checker
(Φ         Ω)

Error trace
Line 5: …
Line 12: …
Line 15:…
Line 21:…
Line 25:…
Line 27:…

…
Line 41:…
Line 47:…



Model Checking

Model checking is an automatic verification 
technique for finite state concurrent systems.
Developed independently by Clarke and 
Emerson and by Queille and Sifakis in 
early 1980’s.
Specifications are written in propositional 
temporal logic.
Verification procedure is an exhaustive 
search of the state space of the design.



Why use Model Checking?
Automatically check, e.g., 

invariants, simple safety & liveness properties 
absence of dead-lock and live-lock, 
complex event sequencing properties,

“Between the window open and the window 
close, button X can be pushed at most twice.”

In contrast to testing, gives complete coverage by 
exhaustively exploring all paths in system,
It’s been used for years with good success in hardware 
and protocol design

This suggests that model-checking can complement
existing software quality assurance techniques.



What makes model-checking software 
difficult?

Model construction 

OK

Error trace

orFinite-state model

Temporal logic formula

Model Checker(Φ       Ω)

State explosion 

Problems using existing checkers:

Property specification

Line 5: …
Line 12: …
Line 15:…
Line 21:…

Output interpretation 



Model Construction Problem

Semantic gap:

Model DescriptionProgram

void add(Object o) {
buffer[head] = o;
head = (head+1)%size;
}

Object take() {
…
tail=(tail+1)%size;
return buffer[tail];
}

Gap
Model Checker

Programming Languages
methods, inheritance, dynamic creation, exceptions, etc.

Model Description Languages
automata



What makes model-checking software 
difficult?

OK

Error trace

orFinite-state model

Temporal logic formula

Model Checker(Φ       Ω)

Model construction State explosion 

Problems using existing checkers:

Line 5: …
Line 12: …
Line 15:…
Line 21:…

Property specification Output interpretation 



Property Specification Problem

Difficult to formalize a requirement in 
temporal logic

“Between the window open and the window 
close, button X can be pushed at most twice.”

…is rendered in LTL as...

[]((open /\ <>close) ->
((!pushX /\ !close) U

(close \/ ((pushX /\ !close) U
(close \/ ((!pushX /\ !close) U

(close \/ ((pushX /\ !close) U
(close \/ (!pushX U close))))))))))



What makes model-checking software 
difficult?

OK

Error trace

orFinite-state model

Temporal logic formula

Model Checker(Φ       Ω)
Line 5: …
Line 12: …
Line 15:…
Line 21:…

Problems using existing checkers:

State explosion 
Output interpretation 

Model construction 
Property specification



State Explosion Problem

Cost is exponential in the number of components

Bit x1,…,xN 2^N states

Moore’s law and algorithm advances can help
Holzmann: 7 days (1980) ==> 7 seconds (2000)

Explosive state growth in software 
limits scalability



What makes model-checking software 
difficult?

OK

Error trace

orFinite-state model

Temporal logic formula

Model Checker(Φ       Ω)

Model construction State explosion 

Problems using existing checkers:

Line 5: …
Line 12: …
Line 15:…
Line 21:…

Property specification Output interpretation 



Output Interpretation Problem

Gap

Error trace

Line 5: …
Line 12: …
Line 15:…
Line 21:…
Line 25:…
Line 27:…

…
Line 41:…
Line 47:…

Program

void add(Object o) {
buffer[head] = o;
head = (head+1)%size;
}

Object take() {
…
tail=(tail+1)%size;
return buffer[tail];
}

Model Description

Raw error trace may be 1000’s of steps long

Must map line listing onto model description
Mapping to source is made difficult by

Semantic gap & clever encodings of complex features
multiple optimizations and transformations



Some Advantages of Model Checking

No proofs!!!
Fast
Counterexamples
No problem with partial specifications
Logics can easily express many 
concurrency properties



Main Disadvantage

State Explosion Problem:
Too many processes
Data Paths

Much progress has been made on this 
problem recently!



Model Checking Problem

Let M be a state-transition graph.
Let ƒ be the specification (system properties)
in temporal logic.
Find all states s of M such that 

M, s |= ƒ.



a

a,b b

q1

q3q2



State-transition graph

Q      set of states {q1,q2,q3}

A set of atomic observations    {a,b}

→ ⊆ Q × Q      transition relation          q1 → q2

[ ]: Q → 2A observation function       [q1] = {a}

set of observations



Mutual-exclusion protocol

||loop

out:  x1 := 1; last := 1

req:  await  x2 = 0  or  last = 2

in:     x1 := 0

end loop.

loop

out:  x2 := 1; last := 2

req:  await  x1 = 0  or  last = 1

in:     x2 := 0

end loop.

P2P1



The translation from a system description 
to a state-transition graph usually involves 
an exponential blow-up !!!

oo001

rr112

ro101 or012

ir112

io101 pc1: {o,r,i} 
pc2: {o,r,i} 
x1: {0,1} 
x2: {0,1} 
last: {1,2}

3⋅3⋅2⋅2⋅2 = 72 states



State-transition graphs are not necessarily 
finite-state, but they don’t handle well:

recursion (need pushdown models)
environment interaction (need game models)
process creation 



Three important decisions when choosing 
system properties:

prohibiting bad vs. desiring good behavior:
safety vs. liveness
may vs. must:
branching vs. linear time
operational vs. declarative:
automata vs. logic



Safety vs. liveness

Safety
something “bad” will never happen

Liveness
something “good” will happen 

(but we don’t know when)



Safety vs. liveness for sequential programs

Safety
the program will never produce a wrong result 
(“partial correctness”)

Liveness
the program will produce a result  (“termination”)

induction on control flow

well-founded induction on data



Safety vs. liveness for state-transition 
graphs

•Safety:   those properties whose violation always 
has a finite witness 

(“if something bad happens on an infinite run,   then it 
happens already on some finite prefix”)

•Liveness:  those properties whose violation never  
has a finite witness 

(“no matter what happens along a finite run, 
something good could still happen later”)



a

a,b b

q1

q3q2

Run:      q1 → q3 → q1 → q3 → q1 → q2 → q2 →

Trace:   a  → b  → a → b  → a  → a,b → a,b →



State-transition graph  S = ( Q, A, →, [] )

Finite runs: finRuns(S) ⊆ Q*

Infinite runs:         infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces:      infTraces(S) ⊆ (2A)ω



This is much easier.

Safety:   the properties that can be 
checked on finRuns

Liveness:   the properties that cannot  be 
checked on finRuns

(they need to be checked on   
infRuns)



Example:

Mutual exclusion
It cannot happen that both processes are in their critical 
sections simultaneously.

Bounded overtaking
Whenever process P1 wants to enter the critical section, 
then process P2 gets to enter at most once before process 
P1 gets to enter.

Starvation freedom
Whenever process P1 wants to enter the critical section, 
provided process P2 never stays in the critical section 
forever, P1 gets to enter eventually.

Safety

Safety

Liveness



a

a,b b

q1

q3q2

Fairness constraint:

the green transition cannot be ignored forever



a

a,b b

q1

q3q2

Without fairness:   infRuns = q1 (q3 q1)* q2
ω ∪ (q1 q3)ω

With fairness:        infRuns = q1 (q3 q1)* q2
ω



Two important types of fairness

Weak (Buchi) fairness
a specified set of transitions cannot be 
enabled forever without being taken 

Strong (Streett) fairness
a specified set of transitions cannot be 
enabled infinitely often without being taken



a

a,b b

q1

q3q2

Strong fairness



a

a,b

q1

q2

Weak fairness



Fair state-transition graph  S = ( Q, A, →, 
[], WF, SF)

WF:     set of weakly fair actions
SF :     set of strongly fair actions
where each action is a subset of  →



Weak fairness comes from modeling 
concurrency

||loop x:=0 end loop. loop x:=1 end loop.

x=0 x=1

Weakly fair action
Weakly fair action



Strong fairness comes from modeling 
choice

loop   m:
n:    x:=0 | x:=1

end loop.

pc=n 
x=0

pc=n 
x=1

pc=m 
x=0

pc=m 
x=1

Strongly fair action
Strongly fair action



Weak fairness vs. Strong fairness

Weak fairness is sufficient for asynchronous 
models (“no process waits forever if it can 
move”). 
Strong fairness is necessary for modeling 
synchronous interaction (rendezvous).
Strong fairness makes model checking more 
difficult. 

Fairness changes only infRuns, not finRuns.

⇓

Fairness can be ignored for checking safety properties.



Two remarks

The vast majority of properties to be verified 
are safety.
While nobody will ever observe the violation 
of a true liveness property, fairness is a 
useful abstraction that turns complicated 
safety into simple liveness.



Branching vs. linear time

Branching time
something may (or may not) happen
(e.g., every req may be followed by grant) 

Linear time
something must (or must not) happen
(e.g., every req must be followed by grant)



Fair state-transition graph  S = ( Q, A, →, 
[], WF, SF )

Finite runs: finRuns(S) ⊆ Q*

Infinite runs:         infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces:      infTraces(S) ⊆ (2A)ω



Branching vs. linear time

•Linear time:   

the properties that can be checked on infTraces

•Branching time:   

the properties that cannot be checked on infTraces

Linear Branching

Safety         finTraces finRuns

Liveness infTraces infRuns



a

aa

b bc c

q0

q2q1

q4q3

a

a
q0

q1

q4q3

Same traces       {aab, aac}                             

Different runs     {q0 q1 q3, q0 q2 q4},  {q0 q1 q3, q0 q1 q4}



Observation  a  may occur.

||

It is not the case that  a  must not  occur. 

Linear

Branching
We may reach an  a  from which we must 
not reach a  b .



a

aa

b bc c

q0

q2q1

q4q3

a

a
q0

q1

q4q3

Same traces, different runs 



a

aa

b bc c

a

a

Same traces, different runs (different trace trees)



Branching vs. linear time

Linear time is conceptually simpler than 
branching time (words vs. trees).
Branching time is often computationally more 
efficient.

(Because branching-time algorithms can 
work with given states, 
whereas linear-time algorithms often need 
to “guess” sets of possible states.)



Logics

Linear Branching

Safety         STL

Liveness LTL CTL



Defining a logic

Syntax:  
What are the formulas?

Semantics:
What are the models?
Does model M satisfy formula ϕ ? M |= ϕ



Propositional logics:
boolean variables (a,b) &  boolean operators  
(∧,¬)
model = truth-value assignment for variables

Propositional modal (e.g., temporal) logics: 
...  &  modal operators ( , )
model = set of (e.g., temporally) related prop. 
models

atomic observations

state-transition graph (“Kripke structure”)
observations



Model Checker Performance

Model checkers today can routinely handle 
systems with between 100 and 300 state 
variables.
Systems with 10120 reachable states have 
been checked.
By using appropriate abstraction techniques, 
systems with an essentially unlimited 
number of states can be checked.



Notable Examples- IEEE Futurebus+

In 1992 Clarke and his students at CMU used SMV 
to verify the IEEE Future+ cache coherence 
protocol.
They found a number of previously undetected 
errors in the design of the protocol.
This was the first time that formal methods have 
been used to find errors in an IEEE standard.
Although the development of the protocol began in 
1988, all previous attempts to validate it were based 
entirely on informal techniques.



Notable Examples-IEEE SCI

In 1992 Dill and his students at Stanford used 
Murphi to verify the cache coherence protocol of the 
IEEE Scalable Coherent Interface.
They found several errors, ranging from uninitialized
variables to subtle logical errors.
The errors also existed in the complete protocol, 
although it had been extensively discussed, 
simulated, and even implemented.



Notable Examples-PowerScale

In 1995 researchers from Bull and Verimag used 
LOTOS to describe the processors, memory 
controller, and bus arbiter of the PowerScale
multiprocessor architecture.
They identified four correctness requirements for 
proper functioning of the arbiter.
The properties were formalized using bisimulation
relations between finite labeled transition systems.
Correctness was established automatically in a few 
minutes using the CÆSAR/ ALDÉBARAN toolbox.



Notable Examples -HDLC

A High-level Data Link Controller was 
being designed at AT&T in Madrid in 1996.
Researchers at Bell Labs offered to check 
some properties of the design using the 
FormalCheck verifier.
Within five hours, six properties were 
specified and five were verified.
The sixth property failed, uncovering a bug 
that would have reduced throughput or 
caused lost transmissions!



Notable Examples
PowerPC 620 Microprocessor

Richard Raimi used Motorola’s Verdict 
model checker to debug a hardware 
laboratory failure.
Initial silicon of the PowerPC 620 
microprocessor crashed during boot of an 
operating system.
In a matter of seconds, Verdict found a BIU 
deadlock causing the failure.



Notable Examples-Analog Circuits

In 1994 Bosscher, Polak, and Vaandrager
won a best-paper award for proving manually 
the correctness of a control protocol used in 
Philips stereo components.
In 1995 Ho and Wong-Toi verified an 
abstraction of this protocol automatically 
using HyTech.
Later in 1995 Daws and Yovine used Kronos
to check all the properties stated and hand 
proved by Bosscher, et al.



Notable Examples-ISDN/ISUP

The NewCoRe Project (89-92) was the first 
application of formal verification in a software project 
within AT&T.
A special purpose model checker was used in the 
development of the CCITT ISDN User Part Protocol.
Five “verification engineers” analyzed 145 
requirements.
A total of 7,500 lines of SDL source code was 
verified.
112 errors were found; about 55% of the original 
design requirements were logically inconsistent.



Notable Examples-Building

In 1995 the Concurrency Workbench was used to 
analyze an active structural control system to make 
buildings more resistant to earthquakes.
The control system sampled the forces being 
applied to the structure and used hydraulic actuators 
to exert countervailing forces.
A timing error was discovered that could have 
caused the controller to worsen, rather than 
dampen, the vibration experienced during 
earthquakes.



Model Checking Systems

There are many other successful 
examples of the use of model checking in 
hardware and protocol verification.
The fact that industry (INTEL, IBM, 
MOTOROLA) is starting to use model 
checking is encouraging.
Below are some well-known model checkers, 
categorized by whether the specification is a 
formula or an automaton.



Temporal Logic Model Checkers

The first two model checkers were EMC and 
Caesar.
SMV is the first model checker to use BDDs.
Spin uses the partial order reduction to 
reduce the state explosion problem.
Verus and Kronos check properties of real-
time systems.
HyTech is designed for reasoning about 
hybrid systems.



Behavior Conformance Checkers

The Cospan/FormatCheck system is based 
on showing inclusion between w-automata.
FDR checks refinement between CSP 
programs; recently, used to debug security 
protocols.
The Concurrency Workbench can be used 
to determine if two systems are 
observationally equivalent.



Combination Checkers

Berkeley’s HSIS combines model checking 
with language inclusion.
Stanford’s STeP system combines model 
checking with deductive methods.
VIS integrates model checking with logic 
synthesis and simulation.
The PVS theorem prover has a model 
checker for model mu-calculus.



Directions for Future Research

Investigate the use of abstraction, compositional 
reasoning, and symmetry to reduce the state 
explosion problem.
Develop methods for verifying parameterized 
designs.
Develop practical tools for real-time and hybrid 
systems.
Combine with deductive verification.
Develop tool interfaces suitable for system 
designers.


	Computer-Aided Verification
	Topics
	Topics
	The Blue Screen of Death (BSOD)
	The quest for correctness
	What is system verification?
	System verification = Model checking
	The Dream
	Model Checking
	Model Checking
	Why use Model Checking?
	What makes model-checking software difficult?
	Model Construction Problem
	What makes model-checking software difficult?
	Property Specification Problem
	What makes model-checking software difficult?
	State Explosion Problem
	What makes model-checking software difficult?
	Output Interpretation Problem
	Some Advantages of Model Checking
	Main Disadvantage
	Model Checking Problem
	State-transition graph
	Mutual-exclusion protocol
	State-transition graphs are not necessarily finite-state, but they don’t handle well:
	Three important decisions when choosing system properties:
	Safety vs. liveness
	Safety vs. liveness for sequential programs
	Safety vs. liveness for state-transition graphs
	State-transition graph  S = ( Q, A, , [] )
	Example:
	Two important types of fairness
	Fair state-transition graph  S = ( Q, A, , [], WF, SF)
	Weak fairness comes from modeling concurrency
	Strong fairness comes from modeling choice
	Weak fairness vs. Strong fairness
	Two remarks
	Branching vs. linear time
	Fair state-transition graph  S = ( Q, A, , [], WF, SF )
	Branching vs. linear time
	Branching vs. linear time
	Logics
	Defining a logic
	
	Model Checker Performance
	Notable Examples- IEEE Futurebus+
	Notable Examples-IEEE SCI
	Notable Examples-PowerScale
	Notable Examples -HDLC
	Notable ExamplesPowerPC 620 Microprocessor
	Notable Examples-Analog Circuits
	Notable Examples-ISDN/ISUP
	Notable Examples-Building
	Model Checking Systems
	Temporal Logic Model Checkers
	Behavior Conformance Checkers
	Combination Checkers
	Directions for Future Research

