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What is Verification?

Verification involves checking a satisfaction 
relation, usually in the form of a sequent :

Where
is a model (or implementation)
is a property (or specification)
is a relationship that should hold between       
and    , i.e., 
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What is Verification?

Verification involves:
specifying the model / system / implementation
specifying the property / specification
choosing the satisfaction relation
checking the satisfaction relation

These 4 steps are NOT independent.

Example: specify the model as a finite state machine, 
specify the property in temporal logic, use the 
satisfaction relation that the model must satisfy a 
formula in temporal logic, use model checking to check 
the satisfaction relation.



Logic and Verification

Different logics give us different ways of expressing       
and      and define the pairs that are members 

of     . Another way to say this is to say that the 
model satisfies the property, or that we can 
conclude the property from the model.
Hopefully the calculation of the satisfaction relation 
is compositional in either the property or the model. 
This decomposes the verification task.
The model and property both describes sets of 
“behaviours”. 
The satisfaction relation is a relation between the 
set of behaviours of the model and the set of 
behaviours of the property.

M f



Models and Properties

The term “model” is used loosely here. It may not be 
executable, and it may not be a complete 
description of the system’s behaviour. The terms 
implementation and specification are relative terms. 
An implementation generally contains more details 
than a specification.
In hardware, often the model is a description of the 
circuit in a hardware description language such as 
VHDL or Verilog. The real thing is the physical 
realization of the chip.
Sometimes the model is actually a specification and 
the property is an attribute such as completeness or 
consistency.



What is a Logic?

In general, logic is about reasoning. It is 
about the validity of arguments, consistency 
among statements (. . . ) and matters of truth 
and falsehood. In a formal sense logic is 
concerned only with the form of arguments
and the principles of valid inferencing.



Another definition of Logic

logic is: the science of correct reasoning, 
valid induction or deduction. Symbolic logic is 
a modern type of formal logic using special 
mathematical symbols for propositions, 
quantifiers, and relationships among 
propositions and concerned with the 
elucidation of permissible operations upon 
such symbols.



Induction vs Deduction

These are two branches in the philosophical study 
of logic. 
Induction is “the process of deriving general 
principles from particular facts or instances. ”
Example:

Coffee shop burger #1 was greasy.
Coffee shop burger #2 was greasy.
Coffee shop burger #3 was greasy....
Coffee shop burger #100 was greasy.
Therefore, all coffee shop burgers are greasy. 

In induction, conclusions are probable but not 
conclusive.



Induction vs Deduction

Deduction is “the process of reasoning in which a 
conclusion follows necessarily from the stated 
premises; inference by reasoning from the general 
to the specific. ”
Mathematical Induction: a method of proving 
statements about well-ordered sets. The most 
common use of mathematical induction is for the 
natural numbers where there is a base case and an 
induction hypothesis. Mathematical induction is a 
form of deduction because the conclusions are 
conclusive.
We will be studying deduction and using 
mathematical induction .



Another definition of Logic

A branch of philosophy and mathematics that deals with the 
formal principles, methods and criteria of validity of inference, 
reasoning and knowledge. 
Logic is concerned with what is true and how we can know 
whether something is true. This involves the formalization of 
logical arguments and proofs in terms of symbols representing 
propositions and logical connectives. The meanings of these 
logical connectives are expressed by a set of rules which are 
assumed to be self-evident .
In symbolic logic, arguments and proofs are made in terms of 
symbols representing propositions and logical connectives. The 
meanings of these begin with a set of rules or primitives which 
are assumed to be self-evident. Fortunately, even from vague 
primitives, functions can be defined with precise meaning.



Elements of a Logic

A logic consists of:
syntax
semantics
proof procedure(s) (also called proof theory)



Syntax and Semantics

syntax:
define “well-formed formula”

semantics:
define “ ” (“satisfies”)

(satisfaction relation)
define                         (“entails”, or semantic 
entailment) means from the premises , 
we may conclude , where                and       are all 
well-formed formulae in the logic
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Proof Procedure

proof procedure(s):
define “ ” (pronounced “proves”)
a proof procedure is a way to calculate                         
(also called a sequent). By “calculation”, we mean 
that there is a procedure for determining if          

there may be multiple proof procedures that we 
will indicate by subscripting    , e.g., the natural 
deduction proof procedure for propositional logic 
will be 
for some logics, there isn’t a proof procedure that 
always terminates for any sequent

1 2 3, , ?f f f y
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Proof Procedures

Proof procedures are algorithms that perform 
“mechanical manipulations on strings of 
symbols. A proof procedure does not make 
use of the meanings of sentences, it only 
manipulates them as formal strings of 
symbols”.
There may be multiple ways to prove a 
sequent in a particular proof procedure.
A theory is the set of theorems that can be 
proven by a proof procedure.



Theorem Provers

Many proof procedures rely on pattern matching, i.e., 
looking for statements that have the same form with 
appropriate substitutions (unification).
As we work with multiple proof procedures, we will 
see that working through the steps is often very 
mechanical, i.e., the kinds of things that computers 
do well!
Theorem provers are software tools that mechanize 
proof procedures. Theorem provers can be 
interactive or automatic.



Soundness and Completeness

The semantics and the proof procedures (     and     ) 
are related in the concepts of soundness and 
completeness.
Definition. A proof procedure is sound if 
then                           .
A proof procedure is sound if it proves only tautologies.
Definition. A proof procedure is complete if 
then               .
A proof procedure is complete if it proves every 
tautology.
Note that in the literature, there is not consistent use 
of the symbols     and      .
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Consistency

Definition. A proof procedure is consistent if 
it is not possible to prove both and       , i.e.,

not both            and              .
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Propositional Logic

Invented by George 
Boole (1815-64). “An 
Investigation of the Laws 
of Thought on which are 
founded The Mathemat-
ical Theories of Logic 
and Probabilities”.



Propositional Logic

Propositional logic is also called sentential logic,
i.e., the logic of sentences. It is also called
propositional calculus or sentential calculus.

syntax (well-formed formulas)
semantics (truth tables)
proof theory

axiom systems
natural deduction
sequent calculus



Propositional Logic: Syntax

Its syntax consists of:
two constant symbols: true and false
Proposition letters
Propositional connectives
Brackets



Propositions

Definition. Proposition letters represent declarative 
sentences, i.e., sentences that are true or false. 
Sentences matching proposition letters are atomic 
(non-decomposable), meaning they don’t contain any 
of the propositional connectives.
Here are some examples:

It is raining outside.
The sum of 2 and 5 equals 7.
The value of program variable a is 42.

Sentences that are interrogative (questions), or
Imperative (commands) are not propositions.



Using Symbols

Because in logic, we are only concerned with 
the structure of the argument and which 
structures of arguments are valid, we 
“encode” the sentences in symbols to create 
a more compact and clearer representation of 
the argument. We call these propositional 
symbols or proposition letters.
DO NOT use T, F, t, or f in any font as 
symbols representing sentences!



Example of Using Symbols

Example: If the train arrives late and there 
are no taxis at the station, then John is late 
for his meeting. John is not late for his 
meeting. The train did arrive late. Therefore, 
there were taxis at the station.



Propositional Connectives



Terminology

In implication, as in
is the premise or antecedent or hypothesis
is the consequent or conclusion

is called the contrapositive of            .
The set of connectives          are complete in the sense 
that all the other connectives can be defined using 
them, e.g.,                                    . Other subsets of the 
binary connectives are also complete in the same 
sense.

p qÞ
p
q
b a崿 a bÞ

{ , }崷

( )a b a b? 尰 椥



Well-formed formulas

The following is an expression formed out of 
propositional symbols, brackets propositional 
connectives:

but it’s not a formula in propositional logic! 
Next, we make precise the notion of a well-
formed formula

( )a c b殔



Well-formed formulas
Definition. The well-formed formulae of propositional 

logic are those obtained by the following 
construction rules:
true, false, and the proposition letters are atomic 
formulas.
If   is an atomic formula, then   is a formula.
If   and    are formulas, then each of the following 
are formulas:

No other expressions are formulas.
Note that this is an inductive definition, meaning the 
set is defined by basis elements, and rules to construct 
elements from elements in the set.

a a
p q

( ) ( ) ( ) ( ) ( )p p q p q p q p q    崷 筊



Well-formed Formulas

Brackets around the outermost formula are 
usually omitted.
Brackets can be omitted using the following 
rules of precedence of operators:

Note: Some texts do not use exactly these 
rules of precedence, they rank     and     at the 
same level of precedence, and     and     , at the 
same level of precedence.

, , , ,崷 筊
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Semantics

Semantics means “meaning”. 
Semantics relate two worlds. Semantics provide an 
interpretation (mapping) of expressions in one world 
in terms of values in another world. Semantics are 
often a function from expressions in one world to 
expressions in another world.
The semantics (i.e., the mapping) is often called a 
model or an interpretation. We write             to mean 
the model satisfies the formula. In propositional logic, 
models are called Boolean valuations.
Proof procedures transform the syntax of a logic in 
ways that respect the semantics.

M f



Semantics of Propositional Logic

We’ve described the syntax for propositional logic, 
which is the domain of the semantic function.
Classical logic is two-valued. The two possible truth 
values are T, and F, which are two distinct values.
The range of the semantic function for propositional 
logic is the set of truth values:

Note that these truth values are distinct from the 
syntax elements true, and false.

Tr = {T,F} 



Semantics of Propositional Logic

Truth Values:
There are functions on these truth values that 
correspond to the meaning of the propositional 
connectives. We overload the operators “ ”, “ ”, 
etc. to be both part of the syntax of propositional 
logic, and operations on the sets of truth values in 
our model for propositional logic.

Truth tables are used to describe the functions of 
operations on these truth values.

Tr = {T,F} 

Ù Ú

:(Tr Tr) Tr棷
:Tr Tr堮

.etc



Truth Tables

These connectives are truth functional, that is given the truth 
values “of each component part of a compound sentence 
containing connectives, the truth value of the whole sentence is
uniquely determined”.
A truth table for any formula containing      atomic propositions 
has      lines.

n
2n



Boolean Valuations

The semantics of propositional logic are an interpretation of any 
expression in propositional logic (i.e., the constants true and 
false, the proposition letters, and the propositional connectives) 
in the set       . The semantics of propositional logic are called a 
Boolean valuation.
Definition. A Boolean valuation is a mapping v from the set of 
propositional formulas to the set meeting the conditions:

.
.

for all the connectives:
Note that :              and                   is given by the truth tables on 
the previous slide.

T r

T r
(true)= , (false)=v T v F 
( ) ( ( ))v p v p¬ = ¬

( ) ( ) ( )v p q v p v q=o o

( ( ))v p¬ ( ) ( )v p v qo



Boolean Valuations

Here’s an example of a Boolean valuation:

and the propositional connectives map to the corresponding 
operation on the truth values in the model.

A Boolean valuation is uniquely determined by the values of v for 
the proposition letters. There are multiple Boolean valuations for 
propositional logic.

( ) T, ( ) F, ( ) F, (false) F, (true) Tv p v q v r v v= = = = =

(( ) )  ( ) ( )
                       ( ( ) ( )) ( )

                        (T F) F
                        F F
                       F

v p q r v p q v r
v p v q v r

⇒ ∧ = ⇒ ∧
= ⇒ ∧
= ⇒ ∧
= ∧
=



Satisfiability

Definition. A formula a is satisfiable if there 
is a Boolean valuation v such that
We sometimes say that the formula “has a 
satisfying assignment” to mean that it is 
satisfiable.
We are mostly interested in the propositional 
formulas that map to T in all the possible 
Boolean valuations (i.e., in all model).

( ) Tv a =



Tautologies

Definition. A propositional formula a is a 
tautology (also called valid or a theorem) if 

for every Boolean valuation v.
i.e., , a tautology is a formula that is true for 
all possible truth values of the propositional 
letters used in the formula. The last column of 
the truth table for a tautology contains all T.
Note that a formula a is a tautology iff :       is 
not satisfiable.

( ) Tv a =

a¬



Semantic Entailment

means that if            and              and        
then            , which is equivalent to saying

is a tautology, i.e.,

1 2 3, ,φ φ φ ψ`

1( ) Tv φ = 2( ) Tv φ = 3( ) Tv φ =
( ) Tv ψ =

1 2 3( )φ φ φ ψ∧ ∧ ⇒

1 2 3 1 2 3( , , ) (( ) )φ φ φ ψ φ φ φ ψ≡ ∧ ∧ ⇒｀



Models and Entailment

In propositional (and predicate) logic,      is 
overloaded and has two meanings:

relates a model to a formula, saying that      
satisfies the formula    . This is called a 

satisfaction relation.
relates two formulas, saying that for all 

v (i.e., for all possible models), if              then  
. This is called semantic entailment.

These two uses can be distinguished by their 
context.

φM

M φ

ψ φ`
( ) Tv ψ =

( ) Tv φ =



Falsehood

Definition. A falsehood (contradiction) is a 
formula that is false for all possible truth 
values of the propositional symbols used in 
the formula. The last column of the truth table 
for a tautology contains all F.



Consistency

Definition. A collection of formulas is 
consistent if the formulas can all be true 
simultaneously.
A collection of formulas is consistent if there 
is a Boolean valuation in which all the 
formulas can be true simultaneously.



Consistency

If a set of premises of an implication are not 
consistent, they can be used to prove a 
contradiction, i.e.,

or

This is sometimes called the “false implies anything”
problem, meaning that nothing is proven about a 
system if there are inconsistent premises. It is 
standard practise in verification to check that one’s 
premises are not inconsistent to avoid this problem.

,p p q q¬ ∧¬｀

, falsep p¬ ｀



Example of Checking Consistency

Sales of houses fall off if interest rates rise. 
Auctioneers are not happy if sales of houses fall off. 
Interest rates are rising. Auctioneers are happy.

s = sales of houses fall off
r = interest rates rise
h = auctioneers are happy
The formulas of the problem are:

To check that this set of formulas is consistent, we 
check that the conjunction of the formulas is 
satisfiable (i.e., there is a Boolean valuation that 
maps the formula to T), i.e., that the conjunction of 
the formulas is not a contradiction.

, , ,r s s h r h⇒ ⇒¬



Example of Checking Consistency

Does the following have a satisfying 
assignment?

( ) ( )r s s h r h⇒ ∧ ⇒¬ ∧ ∧



Example of Checking Consistency

Thus, the conjunction of the formulas is a 
contradiction so this set of formulas is 
inconsistent.
Using the proof procedures that we will talk 
about next, to prove a set of formulas is 
inconsistent, we would prove that the 
negation of the conjunction of the formulas is 
a tautology.



Decidability

A question is decidable if there is an 
algorithm that will always terminate and 
deliver the correct answer to the problem 
“yes” or “no”.
A logic is decidable if there is an algorithm to 
determine if any formula of the logic is a 
tautology (is a theorem, is valid).
Propositional logic is decidable because we 
can always construct the truth table for the 
formula.



Proof Procedures

We can always determine if a formula is a tautology 
by using truth tables to determine the value of the 
formula for every possible combination of values for 
its proposition letters, but this would be very tedious 
since the size of the truth table grows exponentially .
Proof procedures for propositional logic are alternate 
means to determine tautologies. As long as the 
proof procedure is sound, we can use the proof 
procedure in place of truth tables to determine 
tautologies.



Proof Procedures for Propositional Logic

There are many proof procedures for propositional 
logic. Some match the human reasoning process. 
Others are better suited to automation by computers. 
Examples of proof procedures are:

Resolution 
Semantic Tableaux  
Natural Deduction  
Sequent Calculus  
Hilbert Systems (axiom systems)  
Davis-Putnam  
Binary Decision Diagrams  



Proof Procedures for Propositional Logic

“. . . based on different insights into the 
processes by which one recognizes that a 
formula expresses a logical truth.”
As an appropriate lead-in to interactive 
theorem provers, we will begin by studying 
two procedures that match human reasoning 
and are related to the way proofs are 
conducted in a theorem prover. These are 
natural deduction and the sequent calculus.



Proof Styles

A proof procedure is a set of rules we use to 
transform premises and conclusions into new 
premises and conclusions.
A goal is a formula that we want to proof is a 
tautology. It has premises and conclusions.
A proof is a sequence of proof rules that 
when chained together relate the premise of 
the goal to the conclusion of the goal.



Forward and Backward Proof

In forward proof, we work from premises to 
conclusions. We apply rules that infer new formulas 
from premises. After many steps, the final infered
formulas should match the conclusion to have a 
proof.
In backward proof, we work from conclusions to 
premises. We use the proof rules backwards to 
reduce a conclusion to a formula closer to the 
premises. After many steps, the final reduced 
formula should match the premise.
Forward proofs are easy to explain, but hard to find.



Hilbert Systems

Also called axiom systems or Frege systems. 
Axiom systems are forward reasoning. 
Starting with known tautologies, derive 
immediate consequences, continue this until 
the desired formula is reached.
In axiom systems, we use axioms and rules 
of inference (also called rules of derivation).
The following discussion is general for all 
Hilbert systems, not just those for 
propositional logic.



Derivations

Definition. A derivation in a Hilbert system 
from a set S of formulas is a finite sequence   

of formulas such that each term 
is either an axiom, or is a member of S, or 
follows from earlier terms by one of the rules 
of inference. We write:

to say that X has a derivation from S in the 
propositional Hilbert system.

1 2, , , nX X XK

ph
S X



Proofs

Definition. A proof in a Hilbert system is a finite 
sequence                         of formulas such that each 
term is either an axiom or follows from earlier terms 
by one of the rules of inference. A proof is a 
derivation from an empty set of formulas, i.e.,
We will write proofs as a list of formulas, each on its 
own line, and refer to the line of a proof in the 
justification for steps.
Definition. X is a theorem of a Hilbert system if X is 
the last line of a proof. X is a consequence of a set S
if X is the last line of a derivation from S.

1 2, , , nX X XK

ph
X



Hilbert System for Propositional Logic

Every axiom must be a tautology. Rules of inference 
produce tautologies from tautologies. 
It’s not very interesting (or useful) to take all the 
tautologies as axioms, rather we need a finite 
number of axioms, or at least a finite number of 
forms that axioms can take. We call these forms 
axiom schemes.
For example, all                                 and            
have the form             .
We adopt the convention of using capital letters to 
represent formulas in axiom schemes.

, ( ) ( )p p p q p q⇒ ∧ ⇒ ∧ q q¬ ⇒¬

X X⇒



An Axiomatic System for Prop. Logic

we limit ourselves to two connectives                  , 
and rewrite any expressions involving other 
connectives in terms of these two. Note that this is a 
complete set of operators.
Three axiom (schemes):

.
.

.
One rule of inference:

(modus ponens - MP) From A and            , B can be 
derived, where A and B are any well-formed formulas.

, and ¬ ⇒

( )A B A⇒ ⇒
( ( )) (( ) ( ))A B C A B A C⇒ ⇒ ⇒ ⇒ ⇒ ⇒

( ) ( )A B B A¬ ⇒¬ ⇒ ⇒

A B⇒



Simple Example of a Proof

Show
.

.

.

(( ) ( )) :
ph

x y x x⇒ ⇒ ⇒

( )x y x⇒ ⇒
Ax1 where ,A x B y@ @

Ax2 where , ,A x B y C x@ @ @

( ( )) (( ) ( ))x y x x y x x⇒ ⇒ ⇒ ⇒ ⇒ ⇒

( ) ( )x y x x⇒ ⇒ ⇒
MP on lines 1 and 2



Example

Rather than constructing particular proofs, we 
can actually construct “meta-theorems”
(theorem schemes).
Example: Show 

ph
A A⇒



Examples to Try

Show the following:
.

.
.

Note: You can reuse previous results in these proofs.

( )
ph

A A B¬ ⇒ ⇒

{ , }
ph

A B B C A C⇒ ⇒ ⇒
( ) (( ) ( ))

ph
B C A B A C⇒ ⇒ ⇒ ⇒ ⇒



Deduction Theorem

Theorem. In any Hilbert System with at least 
Axiom Schemes 1 and 2, and with Modus 
Ponens as the only rule of inference,           

This result was proven by both Tarski and 
Herbrand.

{ }   iff  ( )
ph ph

S X Y S X Y∪ ⇒?



Use of the Deduction Theorem

Show 
Set out to show: 

A premise
premise

B MP on 1 and 2
. Ax1
. MP on 3 and 4

Now that we’ve proven                          , using the 
deduction theorem we can conclude:

{ } ( )
ph

A B A C B⇒ ⇒ ⇒

, ( ) :
ph

A B A C B⇒ ⇒

A B⇒

( )B C B⇒ ⇒

C B⇒
{ , }

ph
A B A C B⇒ ⇒

{ } ( )
ph

A B A C B⇒ ⇒ ⇒



Soundness and Completeness of AL

(Soundness) Every theorem A in AL is a 
tautology:
(Completeness) If A is a tautology then it is a 
theorem of AL:  
AL is consistent.

    
ph

A A⇒?

    
ph

A A⇒?



An Aside on Monotonicity

Definition. A monotonic logic is one where a 
valid proof cannot be invalidated by the 
addition of extra premises.
We will only be studying monotonic logics.
Non-monotonic logics are often useful for 
reasoning about knowledge.



Proof Procedure: Natural Deduction

Natural deduction is a collection of proof rules, 
each of which allows us to infer formulas from 
other formulas, eventually to get from a set of 
premises to a conclusion.
Natural deduction is a form of forward proof. 
Starting from the premises, we use the 
inference rules to deduce new formulas that 
logically follow from the premises. We 
continue this process until we have deduced 
the conclusion.



Natural Deduction

The notation above means that there is a 
proof using natural deduction that the 
argument with premises                and 
conclusion q is valid.
Logical formulas     such that          are called 
theorems.
Again, there are multiple natural deduction 
systems for propositional logic. We will be 
following the presentation of Huth and Ryan.

1 2 3, , ,
ND

p p p qK

1 2 3, , ,p p p K

ψ
ND
ψ



Natural Deduction

Gerhard Gentzen
(1909–1945). Natural 
deduction was 
introduced in his paper 
Investigations into 
Logical Deduction, 
1935.



Inference Rules

Definition. An inference rule is a primitive valid 
argument form. Each inference rule enables the 
elimination or the introduction of a logical connective.
Most inference rules have names that consists of:

a logical connective,
a letter:

“i” indicates that the rule introduces the connective
“e” indicates that the rule eliminates the connective

Examples: i,  e∧ ⇒



Natural Deduction

Natural deduction is based on the idea of 
subordinate proofs. We make assumptions, and 
then discharge the assumptions. 
Subordinate proofs are indented/boxed with the first 
line in the box being the assumption made in that 
subordinate proof. The first line below the 
indentation/box is the result of discharging the 
assumption.
The formulas active at a stage in the proof are those 
occurring in boxes that haven’t yet been closed. We 
can only use active formulas to derive new formulas.
The rules come in pairs: one for introducing a 
connective and one for eliminating it.



Rules for Conjunction

Above the line are the premises of the rule. Below 
the line is the conclusion. To the right of the line is 
the name of the rule.
p and q may be larger formulas than proposition 
letters.
It’s okay to just use     and not distinguish       from   e∧ 1e∧ 2e∧



Example #1

Show  
premise

r premise
q

We present proofs in the linear format, but a 
tree format could be used.
Try: Show  

,
ND

p q r q r∧ ∧
p q∧

e  1∧
q r∧ i  2,3∧

( ) ,
ND

p q r s t q s∧ ∧ ∧ ∧



Rules for Double Negation



Example #2

Show , ( )
ND

p q r p r¬¬ ∧ ¬¬ ∧



Rules for Eliminating Implication

Implies-elimination

This is modus ponens.
We can also derive modus tollens:

Example: If it is raining, then I have my umbrella up. 
I do not have my umbrella up. Therefore it is not 
raining.

  p p q e
q
⇒

⇒

  MTp q q
p

⇒ ¬
¬



Example #3

,
ND

p q q p¬ ⇒ ¬Show 



Implies Introduction

Within the box, we assume r, and
then prove q. The box marks the
scope of the temporary assumption.
Any lines in the box depend on the
assumption. The line after the box
discharges the assumption by moving
it to the LHS of the implication on
the RHS. The line after the box no
longer depends on the assumption.
Boxes may be nested.

We can only use a formula in the proof if it occurs prior to this
line in the proof and it doesn’t occur within an enclosed box
(i.e., it is active). We can copy a formula that has appeared
before as long as it is still active.



Example #4

ND
p p⇒Show 

[1 assumption
2  i 1 1

p
p p⇒ ⇒ -



Example #5

Show ( ) (( ) ( ))
ND

q r q p p r⇒ ⇒ ¬ ⇒¬ ⇒ ⇒



Examples to Try

Show
( )

ND
p q r p q r∧ ⇒ ⇒ ⇒

( )
ND

p q r p q r∧ ⇒ ∧ ⇒

( ) ( )
ND ND

p q p r q r⇒ ∧ ∧?



Rules for Disjunction



Example # 6

ND
p q q p∨ ∨Show 



Rules for Negation



Example #7

Show ,
ND

p q p q p⇒ ⇒¬ ¬



Derived Rule: Proof by Contradiction



Law of the Excluded Middle



Summary of Natural Deduction

Natural deduction for propositional logic is 
sound and complete.
A summary of the rules can be found on an 
additional handout.



Summary

What is verification?
What is logic? (completeness, soundness)
Propositional Logic (syntax, semantics, axiom 
system, natural deduction, next class: 
sequent calculus)
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