Temporal Logics and
Model Checking

Outline

Temporal Logic
o Linear
LPTL (Linear time Propositional Temporal Logics)
o Branching
CTL (Computation Tree Logics)
CTL* (the full branching temporal logics)
Models
o Kripke structure
o Timed automata (TA)
o Communicating Timed Automata (CTA)

Model checking example
o A SPIN example for mutual exclusion problem

o A RED example for fisher’s timed mutual exclusion
algorithm

‘ Model Checking Framework

Temporal logic formula

Temporal Logics

o Linear
LPTL (Linear time Propositional Temporal Logics)

o Branching

CTL (Computation Tree Logics)
CTL* (the full branching temporal logics)

Temporal Logics « Catalog

propositional <«
global <«
branching <
points <
discrete <
past <

first-order
compositional
linear-time
Intervals
continuous
future

Linear Time Propositional Temporal
Logics (ILPTL)

Basic assumption :

Isomorphism: (N > <)

o discrete , suitable for digital computer
o Initial point (0) ; computer needs reboot
a Infinite future , finite and infinite

Every element in N Is a state
o Every state only have one successor

LPTL

Conventional notation :
propositions : p, g, I, ...
sets: A,B,C,D, ...
states : s
state sequences : S
formulas : ¢, g
Set of natural number : N={0, 1, 2, 3, ...}
Set of real number : R

LPTL

Given P : a set of propositions,

a Linear-time structure : state sequence
S=5;,51S5S3S,... Sg-vnnn

S, Is a function of P where P =2 {true,false}

Syntax ot LPTL,

g=true|p| =g |gvd, | OF |4, Ug,

abbreviation

false = — true
DINPy = = (= gDV (= d)))
1> @, = (PIVI,
O g = trueUd
= Oy

Syntax ot LPTL,

Exam. Symbol
in CMU
Op Xp P IS true on next state
pUQ pnUqg From now on, p is always
true until g Is true
<p Fp From now on, there will be a

state where p is eventually
(sometimes) true

P Gp From now on, p is always true

Syntax ot LPTL,

Op Xp P iS true on next state

? - don’t care

Syntax ot LPTL,

From now on, p is always
true until g Is true

Syntax ot LPTL,

<p Fp From now on, there will be a
state where p is eventually
(sometimes) true

‘ Syntax ot LPTL.

Two operator for Fairness

» O%p = OOp ; p will happen infinitely
many times
Infinitely often

e [°p = OOp , p will be always true
after some time in the
future

almost everywhere

Semantics of LLPTL

suffix path :
P S=57515,53545c «--...n..

0)—

SO=15,5,5,535,5c
1)—

SM=15,5,5,5,5:55

S@)=5,8,5,S: S5

Semantics of LLPTL

Suppose there is a state sequence
S=5;,S;5,S35,... Si-.....
We define S ~¢ (Ssatisfies ¢) as :
S Ftrue
S Fp < sy(p)=true, or equivalently p € s,
S ¢ &S F ¢is false
S FgNg, oS FdorS Fg,
S FOg oSO g
S F ¢4 Ug, < 3k20(S0 [¢, AVO0Sj<k(SO /- ¢.))

Semantics of LLPTL

Assume there is a state sequence S which satisfies ¢

(S F o)

then S is one of the model of o.

Assume there is a state sequence S sat ¢ -

then ¢ is satisfiable; otherwise ¢ is
unsatisfiable -

If for all state sequence S £ ¢ -
then gisvalide. (F @)

Semantics of LLPTL

example :

(found enemy — <destroy enemy)

Can’t conveniently express enemies appear
concurrently.

example :

— (A is executing A B is executing)

Example of writing LLPTL. formula (I)

D
P1i(

P, (

0oV

0oV

0,V

Program P,
variable : P,

T

variable :

Program P,
variable : PJ

—| Program Pj
P

Example of writing LLPTL. formula (I)

(O-pg

v ((PovP1VP,) <> OPg) Program F;,j

v O—=p, T :

v ((PevPy) <> Opy)

v O—Pp,

)V (PyvPy) <> Op,) Program Pﬂ« —|TrogrE Pi‘\

‘ Example of writing LLPTL. formula (1I)

Process;, 1<1 <m

Also describe the
mutual exclusion
condition CPUAvailable

‘ Example of writing LLPTL. formula (1I)

N4 idle
AN\ g HI(
(idle; (Oidle, vOready))
v (ready,;«> O ready)
v ((IdleAA g anm TUN > Orum,)
v (runy«> O idle)
v (run;<> O run,
A idle; & O idle;
A ready; & O ready,

)

Branching Temporal Logic

Basic assumption of tree-like structure

*Every node Is a function
of P—{true,false}

*Every state may have many
SuCCessors

Branching Temporal Logic

Basic assumption of tree-like structure

*Every path is isomorphic as N
«Correspond to a state sequence

Branching Temporal Logic

It can accommodate infinite and dense state
successors

In CTL and CTL*, it can’t tell

o Finite and infinite
Is there infinite transitions ?

o Dense and discrete
|s there countable (®) transitions ?

Branching Temporal Logic

Get by flattening a finite state machine

Syntax ot CTL(Computation Tree Logic)

po.=true|p|—-g| p,ve,|30 ¢ | VO y
| 3, U@, | Vo, Up,

abbreviation
false = — true
DINP oy = - (= 2V (= 9),))
P> @, = (=@ Ve,
3 @ = dtrue U @
VO @ = Virue Uy

Semantics of CTL

example symbol

in CMU

J0p EXp there exists a path where p is
true on next state

dp Qg PEUQ from now on. there s a

ath wh ere p is always

rue until q is true

vOp AXp for all path where p is true on
next state

vpUQ PAUQ from now on, for all path where

p is always true until g Is true

Semantics of CTL

10p EXp there exists a path where p
IS true on next state

‘ Semantics of CTL

dpUq PEUQ from now on, there is a path where p
Is always true until q is true

‘ Semantics of CTL

vOp AXp for all path where p is true on
next state

‘ Semantics of CTL

vpUq PAU(Q from now on, for all path
where p is always true until g
IS true

Semantic of CTL

Assume there Is a tree stucture M ~ one state s
In M and a CTL fomula ¢

Define M,s ¢ which means s in M satisfy ¢

Semantics of CTL

s-path : a path in M
which stats from s

S, -path:

s, -path:
S, -path:

Siz-path:

Semantics of CTL

M,s
M,s
M,S
M,S
M,s
M,s
M,s

M.s

- true

-p & p es

- ¢ < M,s g flfalse

v @, S MS Fgyor Ms g,

-30 ¢ & I s-path =s;s, M,s; Fo)

VO ¢ < V s-path =s,s, M,s; Fo)

~Jdp,Up, & Is-path=s,s, , 3k>0
(M,sy F@,AVO0<j<k(M,s; |- ¢@,)

=V o, Up, < Vs-path =s; s, , Ak>0

(M,s =9, AY0<|<k(M,s; =¥7/%)

Syntax ot C'TL*

CTL* fomula (state-fomula)

pr=true |p|l—-g | v, |2V
path-fomula

=gl adildvd | Od] JiU

CTL* is set of all state-fomula /

Example of CTL*

In a fair concurrent environment, jobs
will eventually finish.

v(((

or

Oexecute,) A(

<Oexecute,)) — Ofinish)

V(((O~execute,) A(O®execute,)) —» Ofinish)

Semantics of CTL*

suffix path :

S=
SO0)=
S =
S(2)=
SG) =
S)=

Semantics of CTL*

state-fomula

pr=true [pl—-g, | ¢ve, 3LV
M,s [true

M,Ss mFp < p €S

M,s -9 & M,s g flfalse

Mss = ¢, v, & Ms)={ﬂ1 orM,s }Zfﬂz
M,s =3¢ < 3 s-path=S (S |-)
M,s =V ¢/ < V s-path=S (S)

Semantics of CTL*

path-fomula
= |=d | dNvd, |Od | & U
If S=575;5,S3S, -+ eev.. S FpoMs, F¢

S -/, S ¢, klfalse

S 4, vd, &S FJ,orS

S FO/ & SW

S FdJ. U= 3k20 (S | £ AVO0<j<k(SO F £.))

Models

Kripke Structure
Timed Automata (TA)
Communicating Timed Automata (CTA)

Kripke Structure

A Kripke structure)\ over a set of atomic
propositions, AP, is a four tuple M =(S,S,,R,L)
where

a S is a finite set of states.

a0 S, < S Is the set of initial states.

0 Rc S xS is atransition relation that must be total,
thatis Vs €S.3s".R(s,s")

o LS — 2%71s a function that labels each state with
the set of atomic propositions true in that state.

Example of Kripke Structure

Suppose there is a program

Initially x=1 and y=1,
while true do
X:=(X+y) mod 2;
endwhile

where x and y range over D={0,1}

‘ Example of Kripke Structure

S=DxD

Se={(1,1)}

R={((1,1),(0,1)),((0,1),(1,1)),((1,0).(1,0)),((0,0),(0,0))}
L((1,1))={x=1,y=1},L((0,1))={x=0,y=1},L((1,0))={x=1,y=0},L((0,0))={x=

- o

Timed Automata

A =(Q, 40, P. X, 4 E, 7, 7)

Q : set of control locations

do: Initial location

P : set of propositions

X . set of clock variables

u: Q —-I'(P,X) ; invariant

EcOxQ : set of transitions

7. E ->I'(P, X) ; triggering condition
. E —>2%: set of clocks to be reset

Example of Timed Automata

Suppose we will lunch a missile which will
aim at enemy and fix its direction every 50ms
until the missile hits the target in 500ms.

‘ Example of Timed Automata

A=(Q,q, P, X, 1, E, 7,)

Q={aim - hit} E={ (aim,aim), (aim,hit)}
g,=aim 7 (aim ,aim)= z =50
P={} X={x,vy} 7 (aim hit)= true

u (aim)= x < 500Az <50 7z (aim aim)= {z}
u (hit)=true 7z (a@im hit)= {}

‘Communicating TA (CTA)

A set of TAs, communicate each other by
synchronizers and shared variables

What is a legal concurrent computing ¢

‘Communicating TA (CTA)

What is a legal concurrent computing ¢

‘ Communicating TA (CTA)

Interleaving Semantics

Atomic, instantaneous, non-overlapping

Model checking Examples

A SPIN example for mutual exclusion
problem

A RED example for fisher’s timed mutual
exclusion algorithm

‘ Mutual Exclusion

= Peterson’s solution to the mutual exclusion
problem

flag,=0

flag, == 0]| turn ==1

flag, !=0 && turn !1=1

Critical
Section

‘ Mutual Exclusion in SPIN

bool turn;

bool flag[2];

proctype mutex0() {

again:
flag[0] = 1;
turn = 0O;
(flag[1l] == 0]] turn == 0);
/* critical section */
flag[0] = O;
goto again;

} flag, =0 && turn 1=1

flag,=0

flag, == 0 || turn ==

Critical
Section

Mutual Exclusion in SPIN

bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || _pi
/avgain:

Active process:
automatically creates instances of processes

assert:
Checks that there are only

at most two instances with |

identifiers 0 and 1

flag[_pid] = O;
goto again;

+

_pid:
Identifier of the process

1 - pid);

/* critical section */

Mutual Exclusion in SPIN

bool turn, flag[2];

ncrit:
Counts the number of
Process in the critical section

\7

byte ncrit; ¢

active [2] proctype usen

{
assert(_pid == 0 || __pid == 1);

again:
flag[_pid] = 1;
turn = pid;
(flag[1l - pid] == 0 |]] turn == 1 - pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;
assert:

Checks that there are always
at most one process in the
critical section

flag[_pid] = O;
goto again;

+

Mutual Exclusion in SPIN

bool turn, flag[2];
bool critical[2];

active [2] proctype user()

{
assert(_pid == 0 || _pid == 1);
again:
flag[_pid] = 1;
turn = pid;
(flag[1l - pid] == 0 |]] turn == 1 - pid);

critical[_pid] = 1;
/* critical section */

critical[_pid] = 0O;

flag[_pid] = O;
goto again;

LTL Properties:
[] (critial[O] || critical[1])

[] <> (critical[0])
[] <> (critical[1])

[] (critical[O] ->
(critial[0] U
(‘critical[0] &&
(('critical[0] &&
Icritical[1]) U critical[1]))))
[] (critical[1] ->
(critial[1] U
(‘critical[1] &&
(('critical[1] &&
Icritical[0]) U critical[0]))))

CTA Examples

Fischer’s timed mutual exclusion
A pointer variable initially NULL;
A clock variable x for each process;
Each process {

Initially at idle state;

idle: == NULL - x=0; goto ready;

ready: if x<= A =2 x=0; = P; goto waiting;

waiting: if x> B && == P - goto critical,
If I= P - goto idle;

critical: = NULL,; goto idle;

CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when ?

Consider a naive wrong locking algorithm.
While (true), do {
while (lock = NULL) ;
lock = P;
}

Atomic operations: lock '= NULL = ------- (test)
lock=P; - (assignment)

‘ CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when A<B7?

How can this naive algorithm be wrong?
While (true), do {

while (lock = NULL) ;

lock = P; edistributed computing
/* critical section */ -scheduling policy

Interleaving can happen and mess up.

gii _”\ ‘ F\}

‘ CTA: Fischer’s timed mutual exclusion

algorithm
Why mutual exclusion when ?
How can this naive algorithm be wrong?

While (true)’ do { But, assuming no scheduling mess-up,
while (lock !'= NULL) ; how can lock=P be postponed
lock = P; iIndefinitely
/* critical section */ In a concurrent system ?

‘ CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when A<B?

Remedy to the naive algorithm:
While (true), do {
while (lock '= NULL) ;
/* In between, take at most A sec. */
lock = P;
wait for B > A sec to enter critical section if lock = P still.
[* critical section */

CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when ?

Assumption: all clocks advance their dense
readings at the same rate.

When a process is in , N0 more
process can enter
A process test the lock In only when

all processes have entered

‘ CTA: Fischer’s timed mutual exclusion
algorithm

Process 2, P==2

Process 1, P==1

CTA: Fischer’s algorithm in red
format

[* Fischer's protocol with 2 processes */
process count = 2;
global pointer lock;
local clock x;
mode idle true {
when lock == NULL may x= 0; goto ready;
}
mode ready true {
when x < 10 may x= 0; lock= P; goto waiting;
}
mode waiting true {
when (x > 19 and lock == P) may goto critical;
when lock !'= P may goto idle;
}
mode critical true {
when true may lock = NULL; goto idle;
}
initially lock == NULL and forall pi, (idle[pi] and x[pi] == 0);
risk critical[1] and critical[2];

	Temporal Logics and Model Checking
	Outline
	Model Checking Framework
	Temporal Logics
	Temporal Logics：Catalog
	Linear Time Propositional Temporal Logics (LPTL)
	LPTL
	LPTL
	Syntax of LPTL
	Syntax of LPTL
	Syntax of LPTL
	Syntax of LPTL
	Syntax of LPTL
	Syntax of LPTL
	Semantics of LPTL
	Semantics of LPTL
	Semantics of LPTL
	Semantics of LPTL
	Example of writing LPTL formula (I)
	Example of writing LPTL formula (I)
	Example of writing LPTL formula (II)
	Example of writing LPTL formula (II)
	Branching Temporal Logic
	Branching Temporal Logic
	Branching Temporal Logic
	Syntax of CTL(Computation Tree Logic)
	Semantics of CTL
	Semantics of CTL
	Semantics of CTL
	Semantics of CTL
	Semantics of CTL
	Semantic of CTL
	Semantics of CTL
	Semantics of CTL
	Syntax of CTL*
	Example of CTL*
	Semantics of CTL*
	Semantics of CTL*
	Models
	Kripke Structure
	Example of Kripke Structure
	Example of Kripke Structure
	Timed Automata
	Example of Timed Automata
	Communicating TA (CTA)
	Communicating TA (CTA)
	Communicating TA (CTA)
	Model checking Examples
	Mutual Exclusion
	Mutual Exclusion in SPIN
	Mutual Exclusion in SPIN
	Mutual Exclusion in SPIN
	Mutual Exclusion in SPIN
	CTA Examples
	CTA: Fischer’s timed mutual exclusion algorithm
	CTA: Fischer’s timed mutual exclusion algorithm
	CTA: Fischer’s timed mutual exclusion algorithm
	CTA: Fischer’s timed mutual exclusion algorithm
	CTA: Fischer’s timed mutual exclusion algorithm
	CTA: Fischer’s timed mutual exclusion algorithm
	CTA: Fischer’s algorithm in red format

