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o A SPIN example for mutual exclusion problem

o A RED example for fisher’s timed mutual exclusion
algorithm



‘ Model Checking Framework

Temporal logic formula




Temporal Logics

o Linear
LPTL (Linear time Propositional Temporal Logics)

o Branching

CTL (Computation Tree Logics)
CTL* (the full branching temporal logics)



Temporal Logics « Catalog

propositional <«
global <«
branching <
points <
discrete <
past <

first-order
compositional
linear-time
Intervals
continuous
future



Linear Time Propositional Temporal
Logics (ILPTL)

Basic assumption :

Isomorphism: (N > <)

o discrete , suitable for digital computer
o Initial point (0) ; computer needs reboot
a Infinite future , finite and infinite

Every element in N Is a state
o Every state only have one successor



LPTL

Conventional notation :
propositions : p, g, I, ...
sets: A,B,C,D, ...
states : s
state sequences : S
formulas : ¢, g
Set of natural number : N={0, 1, 2, 3, ...}
Set of real number : R



LPTL

Given P : a set of propositions,

a Linear-time structure : state sequence
S=5;,51S5S3S,... Sg-vnnn

S, Is a function of P where P =2 {true,false}



Syntax ot LPTL,

g=true|p| =g |gvd, | OF |4, Ug,

abbreviation

false = — true
DINPy = = (= gDV (= d)))
1> @, = (PIVI,
O g = trueUd
= Oy




Syntax ot LPTL,

Exam. Symbol
in CMU
Op Xp P IS true on next state
pUQ pnUqg From now on, p is always
true until g Is true
<p Fp From now on, there will be a

state where p is eventually
(sometimes) true

P Gp From now on, p is always true




Syntax ot LPTL,

Op Xp P iS true on next state

? - don’t care



Syntax ot LPTL,

From now on, p is always
true until g Is true




Syntax ot LPTL,

<p Fp From now on, there will be a
state where p is eventually
(sometimes) true




‘ Syntax ot LPTL.

Two operator for Fairness

» O%p = OOp ; p will happen infinitely
many times
Infinitely often

e [°p = OOp , p will be always true
after some time in the
future

almost everywhere




Semantics of LLPTL

suffix path :
P S=57515,53545c «--...n..

0)—

SO=15,5,5,535,5c .........
1)—

SM=15,5,5,5,5:55 .........

S@)=5,8,5,S: S5 .........




Semantics of LLPTL

Suppose there is a state sequence
S=5;,S;5,S35,... Si-.....
We define S ~¢ (Ssatisfies ¢ ) as :
S Ftrue
S Fp < sy(p)=true, or equivalently p € s,
S ¢ &S F ¢is false
S FgNg, oS FdorS Fg,
S FOg oSO g
S F ¢4 Ug, < 3k20(S0 [ ¢, AVO0Sj<k(SO /- ¢.))



Semantics of LLPTL

Assume there is a state sequence S which satisfies ¢

(S F o)

then S is one of the model of o.

Assume there is a state sequence S sat ¢ -

then ¢ is satisfiable; otherwise ¢ is
unsatisfiable -

If for all state sequence S £ ¢ -
then gisvalide. ( F @)



Semantics of LLPTL

example :

(found enemy — <destroy enemy )

Can’t conveniently express enemies appear
concurrently.

example :

— (A is executing A B is executing )



Example of writing LLPTL. formula (I)

D
P1i(

P, (

0oV

0oV

0,V

Program P,
variable : P,

T

variable :

Program P,
variable : PJ

—| Program Pj
P




Example of writing LLPTL. formula (I)

( O-pg

v ((PovP1VP,) <> OPg) Program F;,j

v O—=p, T :

v ((PevPy) <> Opy)

v O—Pp,

)V (PyvPy) <> Op,) Program Pﬂ« —|TrogrE Pi‘\




‘ Example of writing LLPTL. formula (1I)

Process;, 1<1 <m

Also describe the
mutual exclusion
condition CPUAvailable




‘ Example of writing LLPTL. formula (1I)

N4 idle
AN\ g HI(
(idle; (Oidle, vOready))
v (ready,;«> O ready)
v ((IdleAA g anm TUN > Orum,)
v (runy«> O idle)
v ( run;<> O run,
A idle; & O idle;
A ready; & O ready,

)




Branching Temporal Logic

Basic assumption of tree-like structure

*Every node Is a function
of P—{true,false}

*Every state may have many
SuCCessors




Branching Temporal Logic

Basic assumption of tree-like structure

*Every path is isomorphic as N
«Correspond to a state sequence




Branching Temporal Logic

It can accommodate infinite and dense state
successors

In CTL and CTL*, it can’t tell

o Finite and infinite
Is there infinite transitions ?

o Dense and discrete
|s there countable (® ) transitions ?



Branching Temporal Logic

Get by flattening a finite state machine




Syntax ot CTL(Computation Tree Logic)

po.=true|p|—-g| p,ve,|30 ¢ | VO y
| 3, U@, | Vo, Up,

abbreviation
false = — true
DINP oy = - (= 2V (= 9),))
P> @, = (=@ Ve,
3 @ = dtrue U @
VO @ = Virue Uy



Semantics of CTL

example symbol

in CMU

J0p EXp there exists a path where p is
true on next state

dp Qg PEUQ from now on. there s a

ath wh ere p is always

rue until q is true

vOp AXp for all path where p is true on
next state

vpUQ PAUQ from now on, for all path where

p is always true until g Is true



Semantics of CTL

10p EXp there exists a path where p
IS true on next state




‘ Semantics of CTL

dpUq PEUQ from now on, there is a path where p
Is always true until q is true




‘ Semantics of CTL

vOp AXp for all path where p is true on
next state




‘ Semantics of CTL

vpUq PAU(Q from now on, for all path
where p is always true until g
IS true




Semantic of CTL

Assume there Is a tree stucture M ~ one state s
In M and a CTL fomula ¢

Define M,s ¢ which means s in M satisfy ¢



Semantics of CTL

s-path : a path in M
which stats from s

S, -path:

s, -path:
S, -path:

Siz-path:



Semantics of CTL

M,s
M,s
M,S
M,S
M,s
M,s
M,s

M.s

- true

-p & p es

- ¢ < M,s g flfalse

v @, S MS Fgyor Ms g,

-30 ¢ & I s-path =s;s, ...... M,s; Fo)

VO ¢ < V s-path =s,s, ...... M,s; Fo)

~Jdp,Up, & Is-path=s,s, ...... , 3k>0
(M,sy F@,AVO0<j<k(M,s; |- ¢@,)

=V o, Up, < Vs-path =s; s, ...... , Ak>0

(M,s =9, AY0<|<k(M,s; =¥7/%)



Syntax ot C'TL*

CTL* fomula ( state-fomula)

pr=true |p|l—-g | v, |2V
path-fomula

=gl adildvd | Od ] JiU

CTL* is set of all state-fomula /



Example of CTL*

In a fair concurrent environment, jobs
will eventually finish.

v(((

or

Oexecute,) A(

<Oexecute,)) — Ofinish)

V(((O~execute,) A(O®execute,)) —» Ofinish)



Semantics of CTL*

suffix path :

S=
SO0)=
S =
S(2)=
SG) =
S)=




Semantics of CTL*

state-fomula

pr=true [pl—-g, | ¢ve, 3LV
M,s [true

M,Ss mFp < p €S

M,s -9 & M,s g flfalse

Mss = ¢, v, & Ms )={ﬂ1 orM,s }Zfﬂz
M,s =3¢ < 3 s-path=S (S |- )
M,s =V ¢/ < V s-path=S (S )




Semantics of CTL*

path-fomula
= |=d | dNvd, |Od | & U
If S=575;5,S3S, -+ eev.. S FpoMs, F¢

S -/, S ¢, klfalse

S 4, vd, &S FJ,orS

S FO/ & SW

S FdJ. U= 3k20 (S | £ AVO0<j<k(SO F £.))




Models

Kripke Structure
Timed Automata (TA)
Communicating Timed Automata (CTA)



Kripke Structure

A Kripke structure )\ over a set of atomic
propositions, AP, is a four tuple M =(S,S,,R,L)
where

a S is a finite set of states.

a0 S, < S Is the set of initial states.

0 Rc S xS is atransition relation that must be total,
thatis Vs €S.3s".R(s,s")

o LS — 2%71s a function that labels each state with
the set of atomic propositions true in that state.



Example of Kripke Structure

Suppose there is a program

Initially x=1 and y=1,
while true do
X:=(X+y) mod 2;
endwhile

where x and y range over D={0,1}



‘ Example of Kripke Structure

S=DxD

Se={(1,1)}

R={((1,1),(0,1)),((0,1),(1,1)),((1,0).(1,0)),((0,0),(0,0))}
L((1,1))={x=1,y=1},L((0,1))={x=0,y=1},L((1,0))={x=1,y=0},L((0,0))={x=

- o




Timed Automata

A =(Q, 40, P. X, 4 E, 7, 7)

Q : set of control locations

do: Initial location

P : set of propositions

X . set of clock variables

u: Q —-I'(P,X) ; invariant

EcOxQ : set of transitions

7. E ->I'(P, X) ; triggering condition
. E —>2%: set of clocks to be reset



Example of Timed Automata

Suppose we will lunch a missile which will
aim at enemy and fix its direction every 50ms
until the missile hits the target in 500ms.



‘ Example of Timed Automata

A=(Q,q, P, X, 1, E, 7, )

Q={aim - hit} E={ (aim,aim), (aim,hit)}
g,=aim 7 (aim ,aim)= z =50
P={} X={x,vy} 7 (aim hit)= true

u (aim)= x < 500Az <50 7z (aim aim)= {z}
u (hit)=true 7z (a@im hit)= {}




‘Communicating TA (CTA)

A set of TAs, communicate each other by
synchronizers and shared variables

What is a legal concurrent computing ¢




‘Communicating TA (CTA)

What is a legal concurrent computing ¢




‘ Communicating TA (CTA)

Interleaving Semantics

Atomic, instantaneous, non-overlapping




Model checking Examples

A SPIN example for mutual exclusion
problem

A RED example for fisher’s timed mutual
exclusion algorithm



‘ Mutual Exclusion

= Peterson’s solution to the mutual exclusion
problem

flag,=0

flag, == 0 ]| turn ==1

flag, !=0 && turn !1=1

Critical
Section




‘ Mutual Exclusion in SPIN

bool turn;

bool flag[2];

proctype mutex0() {

again:
flag[0] = 1;
turn = 0O;
(flag[1l] == 0 ]] turn == 0);
/* critical section */
flag[0] = O;
goto again;

} flag, =0 && turn 1=1

flag,=0

flag, == 0 || turn ==

Critical
Section




Mutual Exclusion in SPIN

bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || _pi
/avgain:

Active process:
automatically creates instances of processes

assert:
Checks that there are only

at most two instances with |

identifiers 0 and 1

flag[ _pid] = O;
goto again;

+

_pid:
Identifier of the process

1 - pid);

/* critical section */




Mutual Exclusion in SPIN

bool turn, flag[2];

ncrit:
Counts the number of
Process in the critical section

\7

byte ncrit; ¢

active [2] proctype usen

{
assert(_pid == 0 || __pid == 1);

again:
flag[ _pid] = 1;
turn = pid;
(flag[1l - pid] == 0 |]] turn == 1 - pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;
assert:

Checks that there are always
at most one process in the
critical section

flag[ _pid] = O;
goto again;

+




Mutual Exclusion in SPIN

bool turn, flag[2];
bool critical[2];

active [2] proctype user()

{
assert(_pid == 0 || _pid == 1);
again:
flag[ _pid] = 1;
turn = pid;
(flag[1l - pid] == 0 |]] turn == 1 - pid);

critical[_pid] = 1;
/* critical section */

critical[ _pid] = 0O;

flag[ _pid] = O;
goto again;

LTL Properties:
[] (critial[O] || critical[1])

[] <> (critical[0])
[] <> (critical[1])

[] (critical[O] ->
(critial[0] U
(‘critical[0] &&
(('critical[0] &&
Icritical[1]) U critical[1]))))
[] (critical[1] ->
(critial[1] U
(‘critical[1] &&
(('critical[1] &&
Icritical[0]) U critical[0]))))




CTA Examples

Fischer’s timed mutual exclusion
A pointer variable initially NULL;
A clock variable x for each process;
Each process {

Initially at idle state;

idle: == NULL - x=0; goto ready;

ready: if x<= A =2 x=0; = P; goto waiting;

waiting: if x> B && == P - goto critical,
If I= P - goto idle;

critical: = NULL,; goto idle;



CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when ?

Consider a naive wrong locking algorithm.
While (true), do {
while (lock = NULL) ;
lock = P;
}

Atomic operations: lock '= NULL = ------- (test)
lock=P; - (assignment)



‘ CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when A<B7?

How can this naive algorithm be wrong?
While (true), do {

while (lock = NULL) ;

lock = P; edistributed computing
/* critical section */ -scheduling policy

Interleaving can happen and mess up.

gii _”\ ‘ F\}



‘ CTA: Fischer’s timed mutual exclusion

algorithm
Why mutual exclusion when ?
How can this naive algorithm be wrong?

While (true)’ do { But, assuming no scheduling mess-up,
while (lock !'= NULL) ; how can lock=P be postponed
lock = P; iIndefinitely
/* critical section */ In a concurrent system ?




‘ CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when A<B?

Remedy to the naive algorithm:
While (true), do {
while (lock '= NULL) ;
/* In between, take at most A sec. */
lock = P;
wait for B > A sec to enter critical section if lock = P still.
[* critical section */




CTA: Fischer’s timed mutual exclusion
algorithm

Why mutual exclusion when ?

Assumption: all clocks advance their dense
readings at the same rate.

When a process is in , N0 more
process can enter
A process test the lock In only when

all processes have entered



‘ CTA: Fischer’s timed mutual exclusion
algorithm

Process 2, P==2

Process 1, P==1




CTA: Fischer’s algorithm in red
format

[* Fischer's protocol with 2 processes */
process count = 2;
global pointer lock;
local clock x;
mode idle true {
when lock == NULL may x= 0; goto ready;
}
mode ready true {
when x < 10 may x= 0; lock= P; goto waiting;
}
mode waiting true {
when (x > 19 and lock == P) may goto critical;
when lock !'= P may goto idle;
}
mode critical true {
when true may lock = NULL; goto idle;
}
initially lock == NULL and forall pi, (idle[pi] and x[pi] == 0);
risk critical[1] and critical[2];
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